3.64 \(\int \frac {\csc ^5(c+d x)}{a+a \sec (c+d x)} \, dx\)

Optimal. Leaf size=106 \[ -\frac {\csc ^6(c+d x)}{6 a d}-\frac {\tanh ^{-1}(\cos (c+d x))}{16 a d}+\frac {\cot (c+d x) \csc ^5(c+d x)}{6 a d}-\frac {\cot (c+d x) \csc ^3(c+d x)}{24 a d}-\frac {\cot (c+d x) \csc (c+d x)}{16 a d} \]

[Out]

-1/16*arctanh(cos(d*x+c))/a/d-1/16*cot(d*x+c)*csc(d*x+c)/a/d-1/24*cot(d*x+c)*csc(d*x+c)^3/a/d+1/6*cot(d*x+c)*c
sc(d*x+c)^5/a/d-1/6*csc(d*x+c)^6/a/d

________________________________________________________________________________________

Rubi [A]  time = 0.17, antiderivative size = 106, normalized size of antiderivative = 1.00, number of steps used = 8, number of rules used = 7, integrand size = 21, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.333, Rules used = {3872, 2835, 2606, 30, 2611, 3768, 3770} \[ -\frac {\csc ^6(c+d x)}{6 a d}-\frac {\tanh ^{-1}(\cos (c+d x))}{16 a d}+\frac {\cot (c+d x) \csc ^5(c+d x)}{6 a d}-\frac {\cot (c+d x) \csc ^3(c+d x)}{24 a d}-\frac {\cot (c+d x) \csc (c+d x)}{16 a d} \]

Antiderivative was successfully verified.

[In]

Int[Csc[c + d*x]^5/(a + a*Sec[c + d*x]),x]

[Out]

-ArcTanh[Cos[c + d*x]]/(16*a*d) - (Cot[c + d*x]*Csc[c + d*x])/(16*a*d) - (Cot[c + d*x]*Csc[c + d*x]^3)/(24*a*d
) + (Cot[c + d*x]*Csc[c + d*x]^5)/(6*a*d) - Csc[c + d*x]^6/(6*a*d)

Rule 30

Int[(x_)^(m_.), x_Symbol] :> Simp[x^(m + 1)/(m + 1), x] /; FreeQ[m, x] && NeQ[m, -1]

Rule 2606

Int[((a_.)*sec[(e_.) + (f_.)*(x_)])^(m_.)*((b_.)*tan[(e_.) + (f_.)*(x_)])^(n_.), x_Symbol] :> Dist[a/f, Subst[
Int[(a*x)^(m - 1)*(-1 + x^2)^((n - 1)/2), x], x, Sec[e + f*x]], x] /; FreeQ[{a, e, f, m}, x] && IntegerQ[(n -
1)/2] &&  !(IntegerQ[m/2] && LtQ[0, m, n + 1])

Rule 2611

Int[((a_.)*sec[(e_.) + (f_.)*(x_)])^(m_.)*((b_.)*tan[(e_.) + (f_.)*(x_)])^(n_), x_Symbol] :> Simp[(b*(a*Sec[e
+ f*x])^m*(b*Tan[e + f*x])^(n - 1))/(f*(m + n - 1)), x] - Dist[(b^2*(n - 1))/(m + n - 1), Int[(a*Sec[e + f*x])
^m*(b*Tan[e + f*x])^(n - 2), x], x] /; FreeQ[{a, b, e, f, m}, x] && GtQ[n, 1] && NeQ[m + n - 1, 0] && Integers
Q[2*m, 2*n]

Rule 2835

Int[(cos[(e_.) + (f_.)*(x_)]^(p_)*((d_.)*sin[(e_.) + (f_.)*(x_)])^(n_.))/((a_) + (b_.)*sin[(e_.) + (f_.)*(x_)]
), x_Symbol] :> Dist[1/a, Int[Cos[e + f*x]^(p - 2)*(d*Sin[e + f*x])^n, x], x] - Dist[1/(b*d), Int[Cos[e + f*x]
^(p - 2)*(d*Sin[e + f*x])^(n + 1), x], x] /; FreeQ[{a, b, d, e, f, n, p}, x] && IntegerQ[(p - 1)/2] && EqQ[a^2
 - b^2, 0] && IntegerQ[n] && (LtQ[0, n, (p + 1)/2] || (LeQ[p, -n] && LtQ[-n, 2*p - 3]) || (GtQ[n, 0] && LeQ[n,
 -p]))

Rule 3768

Int[(csc[(c_.) + (d_.)*(x_)]*(b_.))^(n_), x_Symbol] :> -Simp[(b*Cos[c + d*x]*(b*Csc[c + d*x])^(n - 1))/(d*(n -
 1)), x] + Dist[(b^2*(n - 2))/(n - 1), Int[(b*Csc[c + d*x])^(n - 2), x], x] /; FreeQ[{b, c, d}, x] && GtQ[n, 1
] && IntegerQ[2*n]

Rule 3770

Int[csc[(c_.) + (d_.)*(x_)], x_Symbol] :> -Simp[ArcTanh[Cos[c + d*x]]/d, x] /; FreeQ[{c, d}, x]

Rule 3872

Int[(cos[(e_.) + (f_.)*(x_)]*(g_.))^(p_.)*(csc[(e_.) + (f_.)*(x_)]*(b_.) + (a_))^(m_.), x_Symbol] :> Int[((g*C
os[e + f*x])^p*(b + a*Sin[e + f*x])^m)/Sin[e + f*x]^m, x] /; FreeQ[{a, b, e, f, g, p}, x] && IntegerQ[m]

Rubi steps

\begin {align*} \int \frac {\csc ^5(c+d x)}{a+a \sec (c+d x)} \, dx &=-\int \frac {\cot (c+d x) \csc ^4(c+d x)}{-a-a \cos (c+d x)} \, dx\\ &=-\frac {\int \cot ^2(c+d x) \csc ^5(c+d x) \, dx}{a}+\frac {\int \cot (c+d x) \csc ^6(c+d x) \, dx}{a}\\ &=\frac {\cot (c+d x) \csc ^5(c+d x)}{6 a d}+\frac {\int \csc ^5(c+d x) \, dx}{6 a}-\frac {\operatorname {Subst}\left (\int x^5 \, dx,x,\csc (c+d x)\right )}{a d}\\ &=-\frac {\cot (c+d x) \csc ^3(c+d x)}{24 a d}+\frac {\cot (c+d x) \csc ^5(c+d x)}{6 a d}-\frac {\csc ^6(c+d x)}{6 a d}+\frac {\int \csc ^3(c+d x) \, dx}{8 a}\\ &=-\frac {\cot (c+d x) \csc (c+d x)}{16 a d}-\frac {\cot (c+d x) \csc ^3(c+d x)}{24 a d}+\frac {\cot (c+d x) \csc ^5(c+d x)}{6 a d}-\frac {\csc ^6(c+d x)}{6 a d}+\frac {\int \csc (c+d x) \, dx}{16 a}\\ &=-\frac {\tanh ^{-1}(\cos (c+d x))}{16 a d}-\frac {\cot (c+d x) \csc (c+d x)}{16 a d}-\frac {\cot (c+d x) \csc ^3(c+d x)}{24 a d}+\frac {\cot (c+d x) \csc ^5(c+d x)}{6 a d}-\frac {\csc ^6(c+d x)}{6 a d}\\ \end {align*}

________________________________________________________________________________________

Mathematica [A]  time = 0.50, size = 122, normalized size = 1.15 \[ -\frac {\cos ^2\left (\frac {1}{2} (c+d x)\right ) \sec (c+d x) \left (3 \csc ^4\left (\frac {1}{2} (c+d x)\right )+12 \csc ^2\left (\frac {1}{2} (c+d x)\right )+2 \sec ^6\left (\frac {1}{2} (c+d x)\right )+3 \sec ^4\left (\frac {1}{2} (c+d x)\right )+24 \left (\log \left (\cos \left (\frac {1}{2} (c+d x)\right )\right )-\log \left (\sin \left (\frac {1}{2} (c+d x)\right )\right )\right )\right )}{192 a d (\sec (c+d x)+1)} \]

Antiderivative was successfully verified.

[In]

Integrate[Csc[c + d*x]^5/(a + a*Sec[c + d*x]),x]

[Out]

-1/192*(Cos[(c + d*x)/2]^2*(12*Csc[(c + d*x)/2]^2 + 3*Csc[(c + d*x)/2]^4 + 24*(Log[Cos[(c + d*x)/2]] - Log[Sin
[(c + d*x)/2]]) + 3*Sec[(c + d*x)/2]^4 + 2*Sec[(c + d*x)/2]^6)*Sec[c + d*x])/(a*d*(1 + Sec[c + d*x]))

________________________________________________________________________________________

fricas [B]  time = 0.91, size = 217, normalized size = 2.05 \[ \frac {6 \, \cos \left (d x + c\right )^{4} + 6 \, \cos \left (d x + c\right )^{3} - 10 \, \cos \left (d x + c\right )^{2} - 3 \, {\left (\cos \left (d x + c\right )^{5} + \cos \left (d x + c\right )^{4} - 2 \, \cos \left (d x + c\right )^{3} - 2 \, \cos \left (d x + c\right )^{2} + \cos \left (d x + c\right ) + 1\right )} \log \left (\frac {1}{2} \, \cos \left (d x + c\right ) + \frac {1}{2}\right ) + 3 \, {\left (\cos \left (d x + c\right )^{5} + \cos \left (d x + c\right )^{4} - 2 \, \cos \left (d x + c\right )^{3} - 2 \, \cos \left (d x + c\right )^{2} + \cos \left (d x + c\right ) + 1\right )} \log \left (-\frac {1}{2} \, \cos \left (d x + c\right ) + \frac {1}{2}\right ) - 10 \, \cos \left (d x + c\right ) - 16}{96 \, {\left (a d \cos \left (d x + c\right )^{5} + a d \cos \left (d x + c\right )^{4} - 2 \, a d \cos \left (d x + c\right )^{3} - 2 \, a d \cos \left (d x + c\right )^{2} + a d \cos \left (d x + c\right ) + a d\right )}} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(csc(d*x+c)^5/(a+a*sec(d*x+c)),x, algorithm="fricas")

[Out]

1/96*(6*cos(d*x + c)^4 + 6*cos(d*x + c)^3 - 10*cos(d*x + c)^2 - 3*(cos(d*x + c)^5 + cos(d*x + c)^4 - 2*cos(d*x
 + c)^3 - 2*cos(d*x + c)^2 + cos(d*x + c) + 1)*log(1/2*cos(d*x + c) + 1/2) + 3*(cos(d*x + c)^5 + cos(d*x + c)^
4 - 2*cos(d*x + c)^3 - 2*cos(d*x + c)^2 + cos(d*x + c) + 1)*log(-1/2*cos(d*x + c) + 1/2) - 10*cos(d*x + c) - 1
6)/(a*d*cos(d*x + c)^5 + a*d*cos(d*x + c)^4 - 2*a*d*cos(d*x + c)^3 - 2*a*d*cos(d*x + c)^2 + a*d*cos(d*x + c) +
 a*d)

________________________________________________________________________________________

giac [A]  time = 0.29, size = 182, normalized size = 1.72 \[ \frac {\frac {3 \, {\left (\frac {6 \, {\left (\cos \left (d x + c\right ) - 1\right )}}{\cos \left (d x + c\right ) + 1} - \frac {6 \, {\left (\cos \left (d x + c\right ) - 1\right )}^{2}}{{\left (\cos \left (d x + c\right ) + 1\right )}^{2}} - 1\right )} {\left (\cos \left (d x + c\right ) + 1\right )}^{2}}{a {\left (\cos \left (d x + c\right ) - 1\right )}^{2}} + \frac {12 \, \log \left (\frac {{\left | -\cos \left (d x + c\right ) + 1 \right |}}{{\left | \cos \left (d x + c\right ) + 1 \right |}}\right )}{a} + \frac {\frac {12 \, a^{2} {\left (\cos \left (d x + c\right ) - 1\right )}}{\cos \left (d x + c\right ) + 1} - \frac {9 \, a^{2} {\left (\cos \left (d x + c\right ) - 1\right )}^{2}}{{\left (\cos \left (d x + c\right ) + 1\right )}^{2}} + \frac {2 \, a^{2} {\left (\cos \left (d x + c\right ) - 1\right )}^{3}}{{\left (\cos \left (d x + c\right ) + 1\right )}^{3}}}{a^{3}}}{384 \, d} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(csc(d*x+c)^5/(a+a*sec(d*x+c)),x, algorithm="giac")

[Out]

1/384*(3*(6*(cos(d*x + c) - 1)/(cos(d*x + c) + 1) - 6*(cos(d*x + c) - 1)^2/(cos(d*x + c) + 1)^2 - 1)*(cos(d*x
+ c) + 1)^2/(a*(cos(d*x + c) - 1)^2) + 12*log(abs(-cos(d*x + c) + 1)/abs(cos(d*x + c) + 1))/a + (12*a^2*(cos(d
*x + c) - 1)/(cos(d*x + c) + 1) - 9*a^2*(cos(d*x + c) - 1)^2/(cos(d*x + c) + 1)^2 + 2*a^2*(cos(d*x + c) - 1)^3
/(cos(d*x + c) + 1)^3)/a^3)/d

________________________________________________________________________________________

maple [A]  time = 0.56, size = 108, normalized size = 1.02 \[ -\frac {1}{32 a d \left (-1+\cos \left (d x +c \right )\right )^{2}}+\frac {1}{16 a d \left (-1+\cos \left (d x +c \right )\right )}+\frac {\ln \left (-1+\cos \left (d x +c \right )\right )}{32 a d}-\frac {1}{24 a d \left (1+\cos \left (d x +c \right )\right )^{3}}-\frac {1}{32 a d \left (1+\cos \left (d x +c \right )\right )^{2}}-\frac {\ln \left (1+\cos \left (d x +c \right )\right )}{32 d a} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

int(csc(d*x+c)^5/(a+a*sec(d*x+c)),x)

[Out]

-1/32/a/d/(-1+cos(d*x+c))^2+1/16/a/d/(-1+cos(d*x+c))+1/32/a/d*ln(-1+cos(d*x+c))-1/24/a/d/(1+cos(d*x+c))^3-1/32
/a/d/(1+cos(d*x+c))^2-1/32*ln(1+cos(d*x+c))/d/a

________________________________________________________________________________________

maxima [A]  time = 0.35, size = 130, normalized size = 1.23 \[ \frac {\frac {2 \, {\left (3 \, \cos \left (d x + c\right )^{4} + 3 \, \cos \left (d x + c\right )^{3} - 5 \, \cos \left (d x + c\right )^{2} - 5 \, \cos \left (d x + c\right ) - 8\right )}}{a \cos \left (d x + c\right )^{5} + a \cos \left (d x + c\right )^{4} - 2 \, a \cos \left (d x + c\right )^{3} - 2 \, a \cos \left (d x + c\right )^{2} + a \cos \left (d x + c\right ) + a} - \frac {3 \, \log \left (\cos \left (d x + c\right ) + 1\right )}{a} + \frac {3 \, \log \left (\cos \left (d x + c\right ) - 1\right )}{a}}{96 \, d} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(csc(d*x+c)^5/(a+a*sec(d*x+c)),x, algorithm="maxima")

[Out]

1/96*(2*(3*cos(d*x + c)^4 + 3*cos(d*x + c)^3 - 5*cos(d*x + c)^2 - 5*cos(d*x + c) - 8)/(a*cos(d*x + c)^5 + a*co
s(d*x + c)^4 - 2*a*cos(d*x + c)^3 - 2*a*cos(d*x + c)^2 + a*cos(d*x + c) + a) - 3*log(cos(d*x + c) + 1)/a + 3*l
og(cos(d*x + c) - 1)/a)/d

________________________________________________________________________________________

mupad [B]  time = 1.01, size = 115, normalized size = 1.08 \[ -\frac {\mathrm {atanh}\left (\cos \left (c+d\,x\right )\right )}{16\,a\,d}-\frac {-\frac {{\cos \left (c+d\,x\right )}^4}{16}-\frac {{\cos \left (c+d\,x\right )}^3}{16}+\frac {5\,{\cos \left (c+d\,x\right )}^2}{48}+\frac {5\,\cos \left (c+d\,x\right )}{48}+\frac {1}{6}}{d\,\left (a\,{\cos \left (c+d\,x\right )}^5+a\,{\cos \left (c+d\,x\right )}^4-2\,a\,{\cos \left (c+d\,x\right )}^3-2\,a\,{\cos \left (c+d\,x\right )}^2+a\,\cos \left (c+d\,x\right )+a\right )} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

int(1/(sin(c + d*x)^5*(a + a/cos(c + d*x))),x)

[Out]

- atanh(cos(c + d*x))/(16*a*d) - ((5*cos(c + d*x))/48 + (5*cos(c + d*x)^2)/48 - cos(c + d*x)^3/16 - cos(c + d*
x)^4/16 + 1/6)/(d*(a + a*cos(c + d*x) - 2*a*cos(c + d*x)^2 - 2*a*cos(c + d*x)^3 + a*cos(c + d*x)^4 + a*cos(c +
 d*x)^5))

________________________________________________________________________________________

sympy [F]  time = 0.00, size = 0, normalized size = 0.00 \[ \frac {\int \frac {\csc ^{5}{\left (c + d x \right )}}{\sec {\left (c + d x \right )} + 1}\, dx}{a} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(csc(d*x+c)**5/(a+a*sec(d*x+c)),x)

[Out]

Integral(csc(c + d*x)**5/(sec(c + d*x) + 1), x)/a

________________________________________________________________________________________